Goal: 33
Total: 38

1. If $\angle C = 50^\circ$, $\angle B = 60^\circ$, and $\angle A = 70^\circ$, find $arc(AB) - arc(DE)$. (1)

![Diagram](image1)

2. Find x. (1)

![Diagram](image2)

3. Find x. (1)

![Diagram](image3)

4. Find x. (1)

![Diagram](image4)

5. Given that A, B, C, and D are all on the circumference of the same circle, that BE is the angle bisector of $\angle BAC$, that $\angle AEB = \angle CEB$, and that $\angle ADC = 50^\circ$, find $\angle BAC$. (2)

![Diagram](image5)
6. Given points A, B, C, D, E such that BE is the angle bisector of $\angle ABC$, $\angle AEB = \angle CEB$, $\angle BAC + \angle BDC = \angle ABD + \angle ACD$, and $\angle ADC = 48^\circ$, find $\angle BCA$. (2)

7. Points A, B, Q, D, and C lie on the circle as shown and the measures of arcs BQ and QD are 42° and 38° respectively. Find $\angle P + \angle Q$. (2)

8. Segments PA and PT are tangent to the circle. Find $\angle TXA$ if $\angle P = 42^\circ$. (2)

9. Consider any cyclic pentagon (a pentagon that can be inscribed within a circle) $ABCDE$. Then prove that, no matter what, $ABCP$ is not cyclic, where P is the center of the circle. (2)

10. Consider chord AB of length 8 inside a circle of radius 5. Prove that only one line DE has a length of 2 such that D is on the arc AB and E is on the line AB. (3)

11. Consider points A, B, I such that $\overline{AI} = \overline{BI}$. Given a point X such that $\angle IAX = \angle IBX = 90^\circ$, find $\overline{AX} - \overline{BX}$. (2)

12. Given that $\overline{AD} = 4$, $\overline{DC} = 8$, $\overline{AH} = 1$, and $\overline{EH} = 1$, find the area of $\triangle ABD$. (2)
13. Consider \(\triangle ABC \) with inradius \(r \) such that \(AB = 9 \), \(BC = 12 \), and \(AC = AB + BC - 2r \). Find \([ABC]\). (3)

14. Consider \(\overline{AB} = x \) and circle \(N \) centered at \(B \) with radius \(r \) such that \(r < x \). Find the length of the tangent from \(A \) to \(N \). (3)

15. Given that \(m\angle BAC = m\angle BGC = 40^\circ \), \(m\angle ABG = 80^\circ \), \(m\angle GEB = 2m\angle DBE \), and \(m\angle DBE = m\angle GBE \), find \(m\angle ADB \). (4)

16. Consider \(\triangle ABC \) with point \(D \) on \(BC \). Let \(M, N \) be the circumcenters of \(\triangle ABD \) and \(\triangle ACD \), respectively. Let the circumcircles of \(\triangle ACD \) and \(\triangle MND \) intersect at \(H \neq D \). Prove \(A, H, M \) are collinear. (\(\ast \) 7)